Hadoop and Apache Spark are seen as the competitors in the world of big data, but now the growing consensus is that they are better convention in together. Here is a brief look at what they do and how they are compared. 1. They do different things: Both are the big-data frameworks, but they do not serve the same purposes. Hadoop is a distributed data infrastructure. It also Indexes and keep track of that data, enabling big-data processing and analytics. On the other hand, Spark is a data processing tool. Secondly, both can be used individually, without the other. 3. Spark is faster 4. You may not need Spark's speed: Spark is fit for real-time marketing campaigns, online product recommendations, cybersecurity analytics and machine log monitoring. 5. Failure recovery: differently, but still good. Read more at: http://www.computerworld.com/article/3014516/big-data/5-things-to-know-about-hadoop-v-apache-spark.html
No comments:
Post a Comment